Statistics For Machine Learning

(STATS-ML.AW1) / ISBN : 978-1-64459-689-0
Lessons
Lab
TestPrep
AI Tutor (Add-on)
Get A Free Trial

About This Course

Skills You’ll Get

1

Preface

2

Introduction to Statistics 

  • Population and Sample
  • Introduction to Random Variables
  • Other variables
  • Introduction to Descriptive Statistics
  • Visualizations
  • Conclusion
3

Descriptive Statistics

  • Measures of Central Tendency
  • Measures of dispersion
  • The Strength of the relationship between variables
  • Conclusion
4

Random Variables

  • Random Variables
  • Discrete Random Variables
  • Continuous Random Variables
  • Joint Distributions
  • Independent Random Variables
  • Marginal and Conditional Distributions
  • Definition of Mathematical Expectation
  • Properties of Mathematical Expectation
  • Chebyshev’s Inequality
  • Law of large numbers
  • Conclusion
5

Probability

  • Introduction
  • Properties of probability
  • Some other terminologies
  • Conditional probability
  • Bayes’s theorem
  • Probability distributions
  • Conclusion
6

Parameter Estimation

  • Parameter estimation
  • Point estimate – The mathematics way
  • Sampling distributions
  • Central Limit Theorem
  • Estimators having bias component
  • The variance of a point estimate
  • Standard Error of Estimator
  • Mean Squared Error of Estimator
  • Methods to Determine Point Estimates
  • Confidence Intervals
  • Conclusion
7

Hypothesis Testing

  • Hypothesis
  • Hypothesis Testing
  • Confidence Interval
  • Types of Hypothesis
  • Null Hypothesis
  • Alternative Hypothesis
  • P-Value
  • Steps in hypothesis testing
  • Use Case
  • Z-test
  • T-test
  • One-sample T-test
  • Two-sample T-test
  • Paired T-test
  • Chi-Square test
  • Test of Goodnessoffit
  • Independence test
  • Conclusion
8

Analysis of Variance

  • Introduction to ANOVA
  • One-way ANOVA test
  • Calculation of Mean Square due to Error
  • Calculation of Mean Square due to Treatment
  • Decision Rule
  • Tukey test
  • Two-way ANOVA
  • Main Effects
  • Interaction Effects
  • Multivariate Analysis of Variance (MANOVA)
  • Wilks’ Lambda test
  • Lawley Hotelling Trace
  • Pillai’s Trace
  • Roy’s Largest Root
  • Conclusion
9

Regression

  • Simple Linear Regression
  • Finding the Values of β0 and β1
  • Standard Error
  • Confidence Intervals
  • Unimportant Variable
  • Accuracy of Prediction
  • Data Pre-processing
  • Multiple Linear Regression
  • Polynomial Regression
  • Subset Selection Method
  • Ridge Regression
  • Lasso Regression
  • ElasticNet Regression
  • Logistic Regression
  • Estimation of Parameters
  • Understanding Residuals
  • Patterns of Residuals
  • Multicollinearity
  • Conclusion
10

Data Analysis Using Python

  • Pandas
  • Importing and Reading a CSV Sheet
  • Basic Exploration of Data
  • Converting a Python Data Structure to Data Frame
  • Numerical Description of a Data Frame
  • Adding Conditions in Pandas
  • Extending Extractions – loc and iloc
  • Understanding the iloc() Function
  • Understanding the loc() Function
  • Tackling Null Values
  • Concatenating Data Frames
  • Merging Data Frames
  • Left Join
  • Right Join
  • Outer Join
  • Inner Join
  • Reading and Writing Excel Sheets
  • Exploring Groupby
  • Binning in Pandas
  • Pandas Series
  • NumPy
  • Creating Null Vector
  • Indexing
  • Reshaping a Numpy Array
  • Generating Random Values Using Numpy
  • Descriptive statistics using Numpy
  • Mathematical Operations Using Numpy
  • Other important features in Numpy
  • Conclusion
11

Non-Parametric Statistics

  • The test for randomness
  • Sign Tests
  • One-sample Sign Test
  • Wilcoxon Test
  • Mann Whitney Test
  • Spearman Rank Correlation Test
  • Kruskal Wallis test
  • Conclusion
12

Introduction to Machine Learning

  • Machine Learning
  • Supervised Learning
  • K-Nearest Neighbour
  • Naive Bayes Theorem
  • Decision trees
  • Ensemble trees
  • Support Vector Machines
  • Python application
  • Unsupervised Learning
  • K-Means Clustering
  • Hierarchical Clustering
  • Principal Component Analysis
  • Conclusion

Related Courses

All Course
scroll to top